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Abstract

In this paper we model the volumetric and enthalpic response of a-PMMA during heating at constant rate through the glass transition region
following an aging period of varying length. The modeling is based on a recently developed thermodynamically consistent non-linear viscoelas-
tic theory of thermal and mechanical behaviors of glassy polymers in the glass transition range [Caruthers JM, Adolf DB, Chambers RS,
Shrikhande P. Polymer 2004;45:4577e97. Adolf DB, Chambers RS, Caruthers JM. Polymer 2004;45:4599e621]. The original model is slightly
modified by replacing the stretched exponential by a relaxation function based on a simplified cooperative model emulating the commonly
observed linear variation of the relaxing quantity with logarithmic time. Good agreement is found with the observed temperature dependence
of specific volume and enthalpy. Also the peaks in thermal expansivity and heat capacity are well described, both with regard to their intensity
and position along the temperature axis.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In contrast to the equilibrium of a rubbery polymer, the
non-equilibrium glassy state is associated with time-dependent
processes known as physical aging. Basically, aging is the
approach to equilibrium of a disturbed system accompanied
by changes in thermodynamic, mechanical and other physical
properties. Measurements of the temperature and time depen-
dence of the specific volume, v¼ 1/r, and specific enthalpy, h,
around and below the glass temperature, Tg, belong to com-
monly used tools employed in studying aging phenomena.
To emulate the h(T ) and n(T ) behavior after varying periods
of aging, several semi-empirical concepts have been proposed.

* Corresponding author. Tel.: þ420233109093; fax: þ420233324361.

E-mail addresses: riha@ih.cas.cz (P. Riha), slobodian@ft.utb.cz

(P. Slobodian).

0032-3861/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.polymer.2007.09.007
Among these the models known under their acronyms as
TNM (TooleNarayanaswamyeMoynihan), AGV (Adame
GibbseVogel), and KAHR (KovacseAkloniseHutchinsone
Ramos) appear to have reached a high level of acceptance in
reproducing experimental facts. It may suffice here to refer
to a recent paper by Simon and Bernazzani [1] commenting
on the TNM and KAHR models. Relatively recent is also an
article by Andreozzi et al. [2] applying the TNM and AGV
approaches to DSC thermograms.

As discussed in Ref. [1] the structure of the models men-
tioned above includes several empirical features, especially
with regard to thermodynamic aspects. A few years ago a ther-
modynamically consistent non-linear viscoelastic formalism
has been proposed to describe the behavior of amorphous
polymers in terms of thermophysical parameters and their
temperature dependence [3,4]. According to this theory, based
on rational mechanics, the non-linearities associated with the
transition between rubbery and glassy states are not the result
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of using non-linear parameters, but rather a consequence of the
thermodynamic constitutive framework. The theory employs
a material clock based on the potential energy. The relaxation
functions are represented by stretched exponentials.

In the present paper we employ the thermodynamic formal-
ism according to Refs. [3,4] in order to emulate the h(T ) and
v(T ) behavior of a-PMMA as observed during temperature up-
scans after different periods of aging. Apart from the h(T ) and
v(T ) graphs also the corresponding peaks in the volumetric
coefficient of thermal expansion, ap, and the specific heat
capacity, cp, are included in the analysis.

The reader will note that we do not use the thermodynamic
framework in its original form. The modification consists in
replacing the stretched exponential used in Refs. [3,4] by a
relaxation function resulting from a cooperative model [5e8]
based on an induction mechanism formally analogous to that
encountered in BoseeEinstein statistics. In a simplified form
this amounts to replacing a simple time exponential exp(�lt)
with 1=½ð1þ 3ÞexpðltÞ � 1� in order to account for the non-
exponentiality of the time derivative of the relaxing quantity.
Omitting details given below one finds for 3� 1 and t� 1/l
that this model is a way to reproduce the commonly observed
linear dependence of the relaxing quantity on logarithmic time.

2. Thermodynamic formalism

The set of thermodynamic constitutive equations [3,4] re-
cently proposed to capture the wide range of behaviors ob-
served in amorphous polymers in connection with the glass
transition are determined from the Helmholtz free energy us-
ing the rational mechanics framework and a material time
scale. The Helmholtz free energy is approximated by a Frechet
expansion in the temperature and strain histories about the
equilibrated state at the current temperature and strain. The
material clock is controlled by the potential energy contribu-
tion to the internal energy that is likewise determined from
the Helmholtz free energy.

The original constitutive equations are reproduced below in
the form used here to describe the glass transition in PMMA at
atmospheric pressure. Owing to this condition the simplified
equation for the stress can be written as:

0¼ SHN þ rrefj1

Z t

0

dsf1ðt� � s�ÞdIH

ds
ðsÞI

þ rrefj3ðT; IHÞ
Z t

0

dsf3ðt� � s�ÞdT

ds
ðsÞI; ð1Þ

where the equilibrium contribution to stress:

SHN ¼ Sref
HN
þ rrefjII IHIþ rrefjITDTIþ rref

2
jITTDT2I

þ rrefjIITIHDTI; ð2Þ

is balanced with the volume change (second term) and thermal
stress (third term) in Eq. (1). The double integral terms
appearing in the original constitutive scheme are neglected,
since they have only a minimal effect on the stress constitutive
equation [3]. In the above equations Sref

HN
denotes the equili-

brated stress tensor in the reference state (atmospheric pres-
sure), I the unit tensor, IHzðv� v0Þ=v0 the first invariant of
the Hencky strain, DT ¼ T � Tref the temperature change,
and the subscript or superscript ref the value at the reference
temperature. The four Taylor series coefficients of the equilib-
rium contribution to stress jII ;jIT ;jITT ;jIIT are defined in
Ref. [4]. The coefficients are related to the thermophysical
parameters of the material determined by independent
experiments. Finally, j1;j3 denotes the prefactors and
fkðt� � s�Þðk ¼ 1; 3Þ the normalized relaxation functions which
depend upon backward looking material time ðt� � s�Þ.

The simplified equation for the specific entropy used to
calculate the heat capacity is:

h¼ hN�j3ðT; IHÞ
Z t

0

dsf3ðt� � s�ÞdIH

ds
ðsÞ

�j4ðTÞ
Z t

0

dsf4ðt� � s�ÞdT

ds
ðsÞ; ð3Þ

where the equilibrium contribution to the entropy, hN, is given
by:

hN ¼ href
N � jITIH �

1

2
jIITI2

H � jITTDTIH � jTTDT

� 1

2
jTTTDT2 � 1

6
jTTTTDT3: ð4Þ

Again the double integral terms appearing in the original
constitutive scheme are neglected, owing to a minimal effect
on the Helmholtz free energy for isobaric processes and thus
on the entropy [3]. The Taylor series coefficients of the equi-
librium contribution to the entropy jTT ;jTTT ;jTTTT are intro-
duced in Ref. [4] where their relation to the physical
parameters determined by independent experiments is shown.
Finally, j4 denotes the prefactor and f4ðt� � s�Þ the normalized
relaxation function.

The prefactors jk (k¼ 1, 4) used for the solution of Eqs. (1)
and (3) are the same as in Ref. [4]. However, j3ðT; IHÞ is ex-
panded to higher order terms about the reference temperature
and the reference volume than the corresponding one in
Ref. [4], namely,

j3ðT; IHÞ ¼ jref
3 þ

�
vj3

vT

�ref

IH

DTþ
�

vj3

vIH

�ref

T

IH

þ 1

2

�
v2j3

vT2

�ref

IH

DT2þ 1

2

�
v2j3

vI2
H

�ref

T

I2
H; ð5Þ

though the mixed derivative is not taken into account. The
inclusion of the higher order expansion terms improves our
data representation below the glass transition temperature in
comparison with the use of the original j3ðT; IHÞ form given
in Ref. [4].
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3. The relaxation function based on a simplified cooper-
ative model

Relaxation processes in solids or semi-solids are known
to extend over a considerably broader range of logarithmic
time than a process obeying first-order kinetics. This non-
exponentiality, assumed to be related to cooperative effects,
is often described using a stretched exponential function
(KWW). Despite its frequent use, the physical background
of this function has not been clarified. In the first place, this
applies to the relation between the stretching exponent and
the width of the corresponding spectrum of relaxation times.

Before the KWW function reached its current popularity,
the so-called logarithmic time law stood out as a useful tool
when describing the kinetics of stress or volume relaxation,
primary creep, and other relaxation and recovery processes.
The processes treated in this paper, that is volume and
enthalpy relaxation, do not contradict the observation that
the relaxing quantity varies linearly with logarithmic time
over a significant range. Refs. [5e8] describe a highly simpli-
fied cooperative model which closely emulates this type of
behavior. In this paper we use this model instead of the
KWW function employed in Refs. [3,4]. This replacement is
rather of a formal nature, since both descriptions necessarily
must lead to similar results. However, it is our belief that the
model to be used here provides a better transparency of the
parameters determining the time evolvement of the quantities
under investigation. The following brief outline of the basic
features of the cooperative model may clarify such a view.

The model to be used is based on the idea that the elemen-
tary events contributing to the macroscopic process may occur
in clusters of varying sizes due to an induction effect formally
similar to that encountered in BoseeEinstein (BeE) statistics.
Following Refs. [5e8] we thus start from the differential
equation:

d _n

dt
¼ €n¼�l _n

�
1� b

l
_n

�
; ð6Þ

where l denotes a rate constant (¼ 1/t), t a relaxation time
and b a parameter related to the extension of the process along
the log t axis, that is to say to the degree of cooperativity. The
symbol n is used in a general sense, denoting the macroscopic
relaxing or recovering quantity. The term within the parenthe-
sis in Eq. (6) represents the usual enhancement factor appear-
ing in the same way in a BeE energy distribution. The formal
similarity with BeE statistics becomes evident when Eq. (6) is
integrated to yield the following rate expression:

_nðtÞ ¼ � l

b

1

A expðltÞ � 1
; ð7Þ

where A ¼ ð1� l=b _n0Þ ¼ 1þ 3, with 3� 1 representing an
inverse measure of the extension of the process along the
log t axis. For t values well below 1/l¼ t and A z 1, one finds
_nt ¼ dn=dln t ¼ 1=b ¼ F. As shown in Ref. [5] the latter quan-
tity is the maximum slope of the sigmoid n(ln t) plots. A
straight line with this slope defined as n0 ¼ F lnðtmax=tminÞ
provides a somewhat crude but useful description of the inte-
gral of Eq. (7) in the n(ln t) representation. The times tmax ¼
1=l ¼ t and tmin ¼ 1=bj _n0j ¼ F=j _n0j.

The integral of the rate equation (7) to be used here as the
relaxation function fk (k¼ 1, 3, 4) reads with the already
explained meaning of the symbols as follows:

fkðt;0Þ ¼
nkðtÞ

n0
k

¼ 1�
ln
�
1þ 3�1

k ð1� e�lk tÞ
�

ln½1þ 3�1
k �

: ð8Þ

According to this model the stretching of the macroscopic
process is due to the clustering of the elementary transitions
caused by the induction mechanism underlying Eqs. (6)e(8).
Apart from single elementary transitions, involving only one
relaxing unit, also double, triple, etc. transitions can take
place, leading to correspondingly shortened t values. For dou-
ble transitions the relaxation time is t/2, for triple t/3, etc. The
overall effect is an extension of the t-spectrum towards times
shorter than t¼ 1/l appearing in the basic equations above. In
this respect the cooperative mechanism differs from the time
course described by a KWW function, where the stretching
effect extends to both sides of t.

The notion that a cooperative mechanism of the above type
can be applied to the time evolvement of a system of discrete
relaxing units may need some comments. In the first place we
note that the basic idea behind statistical distributions of BeE
or FermieDirac (FeD) is rather general and not limited to
phenomena involving quantum mechanics. For instance,
when analyzing sorption processes the exclusion principle of
FeD statistics appears to be a useful tool taking into account
the effect of the occupation of sorption sites [9]. In contrast to
this there appears to be no attempts to exploit the equally plau-
sible inclusion mechanism of BeE statistics in modeling time-
dependent phenomena in solids, where independent processes
are unlikely to occur, and where such a mechanism seems to
offer a qualitative statistical picture of the cooperative motion
of the relaxing units, about which there is a general agreement.
Considering the limitations imposed on the motion of these
units by the free volume, it is not unreasonable to assume
that a successful activation of a unit leads not only to a single
transition, but facilitates simultaneous transitions of other
units in its vicinity. This is the basic idea behind Eq. (6) lead-
ing in a natural way to the formation of multiple elementary
transitions. The size distribution of the transition clusters has
been calculated in Refs. [5e8], where it has been shown
that simple transitions are still the most numerous ones, and
that the frequency of larger clusters decreases as 1/size. If n
denotes the total number of units in a relaxing system, then
the relaxation rate expressed in terms of the decreasing num-
ber of clusters, _m, is simply _m ¼ �ln, implying that n is
partitioned among a smaller number of successful activations.
From Refs. [5e8] further follows the expected result that the
clustering tendency decreases with time. A stochastic treat-
ment of the evolution of a macroscopic ensemble in terms of
the master equation accounting for the BeE enhancement
has been presented in Ref. [6].
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The cooperative model employed here is well suited to
describe the commonly observed linear variation of the relax-
ing quantity with logarithmic time. Stress relaxation in solids
and the consolidation of volume in polymers following a cool-
ing step may be mentioned as typical instances of such behav-
ior. Stress relaxation in solids appears to exhibit a remarkable
degree of similarity between different materials, including
both polymers and metals, with regard to the extension of
the process along the log t axis. As discussed in Refs. [5e8]
and exemplified in Ref. [10], the inflexion slope, F, of relaxa-
tion curves plotted as stress vs. logarithmic time is propor-
tional to the initial effective stress, n�0, in the following way:

F¼ ðdn=dln tÞmax¼ ð0:1� 10%Þn�0: ð9Þ

The term effective stress denotes the difference between the
initial applied stress, n0, and the equilibrium stress, nN,
reached after sufficiently long measuring times. For polymers,
Eq. (9) is valid with the provision that the experimental data
do not relate to temperatures close to Tg. In such cases the con-
stant of proportionality in this equation tends to take on larger
values, implying a narrowing of the corresponding distribution
of relaxation times [10]. The normal value of this constant, as
given by Eq. (9), defines a relaxation process extending over
around 4.3 decade of time when approximated by a straight
line tangent to the inflexion region.

Interesting is also the _nðnÞ dependence following from the
cooperative model. By integration of Eq. (6) using d _n=dn ¼
€n= _n one finds:

_n¼� l

b
½expðbnÞ � 1�: ð10Þ

This equation is nearly equivalent to the sinh-relations result-
ing from models where the activation energy is assumed to
depend in a linear manner on the relaxing quantity, and where
the final result is the logarithmic time law already mentioned.

Finally we note that the interpretation of the experimentally
confirmed Eq. (9) in terms of the cooperative model leads to
the remarkable result that the average relaxation time t taken
over the entire process is 1/6 of the t-values of single transi-
tions or, which is the same, that the average size of the clus-
tered transitions is 6 [8]. It may be added that Eq. (9), when
translated into the formalism of the KWW function, corre-
sponds to a stretching exponent b z 0.27 (¼ e/10).

4. Experimental

The polymer used was poly(methyl methacrylate) (a-PMMA,
Plexiglas 6N, Rohm GmbH), density r¼ 1190 kgm�3,
Mw¼ 90 kg/mol, Mw/Mn¼ 1.97. The polymer contained
6 mol% of methyl acrylate distributed at random as determined
by 13C NMR [11].

The dilatometric measurements were carried out using mer-
cury-in-glass dilatometry (MIG) constructed according to
ASTM Standard D 864-52. The PMMA specimen was pre-
pared by compression molding and ground to form a bar
with a cross-section of approximately 6� 6 mm (volume
3.24 cm3). The specimen was inserted into the dilatometer
which was then sealed and filled with filtrated high purity mer-
cury (>99.999%) under vacuum of about 2 Pa. All tempera-
ture programs involving temperature scans and isothermal
annealing were performed in a precision thermostatic bath
(GRAND W14, Grand Instrument, Shepreth, UK), filled
with silicon oil, where the dilatometer was immersed. The
temperature fluctuations of the bath reported by the manufac-
turer were �0.004 �C. The accuracy of the volume measure-
ment was calculated to be about 1� 10�5 cm3/cm3. The
selected cooling rate was 0.3 �C/min, the heating rate 3 �C/
min. Erasing of the thermal histories of PMMA was done by
isothermal annealing at 120 �C for 15 min. Temperature up-
scans were performed after isothermal relaxation at 75 �C
for 0, 192 and 1204 h (aging time).

The measurements of the specific heat capacity were
carried out using PerkineElmer DSC 1 Pyris analyzer. The
temperature and heat flow were calibrated using indium stan-
dard, the values of specific heat capacity with the sapphire
standard. The DSC samples, weight about 6 mg, were covered
in aluminium foil and held in the thermostatic bath by
a strainer. The temperature programs like erasing of the ther-
mal histories, cooling and the relaxation were done in the
thermostatic bath together with the dilatometer. The final
temperature up-scans of the relaxed samples at 75 �C were
performed in the DSC device at a rate of 3 �C/min.

The values of the bulk modulus were extracted from the
volumeetemperature isobars recorded at 20e120 MPa using
a piston-die type pvT instrument (PVT 100 analyzer, SWO
Polymertechnik GmbH, Krefeld, Germany). The temperature
range was from 150 to 60 �C, the isobaric cooling rate 5 �C/
min. Isobars relating to atmospheric pressure were extrapo-
lated using Tait’s equation of state included in the software
of the instrument.

5. Results

The volumetric and calorimetric data shown in Figs. 1 and
2 display the commonly observed peaks in the volumetric
coefficients of thermal expansion (CTE), ap ¼ ðð1=vÞ
ðvv=vTÞÞp (derivatives are taken at constant pressure p), and
the isobaric specific heat capacity, cp ¼ ðvh=vTÞp, appearing
in the vicinity of the glass transition temperature, Tg. In both
cases the intensity of these peaks increases with the length
of the aging period during which the specimens were kept at
a temperature of 75 �C. The change in intensity is accompa-
nied by a shift towards higher temperatures. From the experi-
mental point of view an important difference between the two
sets of graphs may be noted. While the ap(T ) data in Fig. 1
have been obtained by differentiating the v(T ) records
produced by the dilatometer, the cp(T ) results in Fig. 2 are
direct recordings of the DSC device used.

The data in Figs. 1 and 2 are central to the modeling pro-
cedure, since they allow an easy and accurate determination
of the peak position appearing as a reference temperature in
the calculations. This would not be possible when using the
corresponding v(T ) and h(T ) plots shown in Figs. 3 and 4.
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Again there is a basic difference between these two sets of
plots, the v(T ) dependence representing a direct recording pro-
duced by the dilatometer, whereas the h(T ) data were calcu-
lated by integration of the underlying cp values recorded by
the DSC device.

For the sake of clarity we note that a single specimen was
used in all the volumetric records shown in Figs. 1 and 3,
whereas separate DSC specimens were employed for each
temperature up-scan. There appears to be no reason to assume
that this would affect the results. The same applies to the
marked difference in size between the samples used in the
two types of measurements.

Apart from experimental data, Figs. 1e4 also include
the temperature dependence of the quantities in question
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Fig. 1. Comparison of the measured volumetric coefficient of thermal expan-

sion (symbols) with calculated predictions (lines) by means of Eqs. (1)e(5)

and (8) for PMMA samples aged for different times. The symbol 6 and
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Fig. 2. Comparison of the measured specific heat capacity (symbols) with

calculated predictions (lines) for samples aged for different times. Symbols

and lines as in Fig. 1.
calculated using the thermodynamic scheme represented here
by Eqs. (1)e(5) and introduced in detail in Refs. [3,4]. As
can be seen a high degree of accuracy is attained in emulating
the experimentally observed behavior recorded in temperature
up-scans following 0, 192 and 1204 h of aging time at 75 �C.

The physical parameters of PMMA at the reference temper-
ature needed for the predictive calculations are tabulated in
Table 1 as the glassy and equilibrium (rubbery) reference
temperature values. The parameters are identified for each
set of experimental data corresponding to the aging time his-
tory, according to procedures explained in detail in Ref. [4]
and illustrated in Fig. 5 for the coefficients of thermal expan-
sion at the reference temperature and their temperature depen-
dence. In some cases, the difference between the physical
parameters related to the particular reference temperatures
and thereby to the corresponding aging time is marginal.
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lines as in Fig. 1.
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Table 1

The parameters and material characterization

Parameter Units All PMMA samples Sample aging time, h

0 192 1204

Tref
�C 97 99 102

rref kg m�3 1128

aref K�1 7.57� 10�4 1.45� 10�3 1.89� 10�3

aref
g K�1 5.1� 10�4 4.2� 10�4 3.5� 10�4

aref
N K�1 6.2� 10�4

Kref
g GPa 2.45

Kref
N GPa 2.05

cpg
J kg�1 K�1 2080

cpN J kg�1 K�1 2380

cref
p J kg�1 K�1 2480 3170 3960

cref
pg

J kg�1 K�1 2150

cref
pN

J kg�1 K�1 2380

ðvaN=vTÞp K�2 0

ðvag=vTÞp K�2 1.76� 10�5 6.32� 10�6 2.27� 10�6

ðvcpN=vTÞp J kg�1 K�2 2.9

ðvcpg=vTÞp J kg�1 K�2 8

ðvKN=vTÞp MPa K�1 �5.7

ðvKg=vTÞp MPa K�1 �12

C1 Unitless 20

Uref
C J kg�1 9000
When this difference is less than 2%, the parameter values for
the aging times 0, 192 and 1204 h are for simplicity repre-
sented by one average value.

The coefficients C1 and Uref
c in Table 1, which are related to

Williams, Landel, and Ferry (WLF) parameters [3,4], determine
the material time scale, Eq. (11). The WLF parameters values
given in Refs. [12e14] for PMMA lead to the justifiable choice,
C1¼ 20 and C2¼ 50 K. Consequently, the rubbery shift factor,
determined from the WLF equation, can be fitted by the relation-
ship above Eq. (11) which gives Uref

c ¼ 9000 J kg�1. This value
of the equilibrated potential energy contribution to the internal
energy at the reference temperature, Uref

c , is considered constant
in the computation despite its slight changes with the corre-
sponding density at the respective reference temperature. The
reason is that according to our calculations the predictions in
Figs. 1e4 are not sensitive to the subtle variation of the WLF
parameters and the potential energy Uref

c ¼ UNpot
ðrref ; TrefÞ.

The same view is mentioned in Ref. [4].
The reference temperature Tref, to which the parameters and

their temperature dependence are extrapolated, is chosen to
correspond to the CTE peak temperature of samples aging
for different times. This choice is made to find the optimal rep-
resentation of all data.

A comparison of our experimental data for PMMA with the
published ones shows a good agreement. Our glassy CTE
values depend on the aging time lying in the range 2.6e
3.0� 10�4 K�1 with the equilibrium value aN¼ 6.2�
10�4 K�1. Rate-dependent glassy CTE values ag¼ 2.46e
2.35� 10�4 K�1 at cooling rates between 2 and 0.05 �C/
min, and the equilibrium value aN¼ 5.76� 10�4 K�1 are re-
ported in Ref. [15]. For the same grade of PMMA as used in
the present work ag¼ 2.17� 10�4 K�1 and aN¼ 6.14�
10�4 K�1 are given in Ref. [16], and ag¼ 2.04� 10�4 K�1

and aN¼ 6.07� 10�4 K�1 in Ref. [17]. Finally, CTE values
in the range 2.25e2.72� 10�4 K�1 and 5.60e5.80�
10�4 K�1 below and above Tg, respectively, have been com-
piled in Ref. [18].

The measured values of equilibrium and glassy heat
capacity and their difference are similar to data given in
Refs. [17e23]. Our results yield the difference cpN

� cpg
¼

300 J kg�1 K�1 which agrees well with published data lying
in the range 300 J kg�1 K�1� 10%. The equilibrium heat
capacity value, cpN ¼ 2380 J kg�1 K�1, is about 20% higher
than 1950e2060 J kg�1 K�1 as given in Refs. [18,21,22].
This applies also to the glassy heat capacity cpg

¼
2080 J kg�1 K�1 differing from 1680e1780 J kg�1 K�1 as found
in Refs. [18,21,22].
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The values of the measured temperature dependence of the
bulk modulus K have been compared with available data in
Ref. [24]. The difference between our data given in Table 1
and published equilibrium values of K was less than 10%.
Good agreement was found with regard to the temperature de-
pendence of K in equilibrium. Our glassy values of K differ up
to 25% from published data depending on the method used
(isothermal, isobaric) [16,18,24,25]. The temperature depen-
dence of K in the glassy state is again in good agreement
with literature data [24].

Table 2 summarizes the values of the expansion terms of the
equilibrium contribution to the stress (2) and the entropy (4).
The majority of the expansion terms ðjII;jIT ; jTT ;jIIT ;jITTÞ
is expressed in Ref. [4] as the functions of the equilibrium phys-
ical parameters listed in Table 1. Similarly, the terms jTTT and
jTTTT relate to the temperature dependence of the equilibrium
heat capacity cp(T ) through the equilibrium physical parame-
ters. Their values are adjusted in this paper to represent opti-
mally the measured linear temperature dependence of the
equilibrium cp(T ) at temperatures over 105 �C. The values
of ðvj3=vTÞref

IH
; ðvj3=vIHÞref

T presented in Table 2 are also deter-
mined by means of the algebraic relationships with the glassy
physical parameters [4]. Similarly, the expansion terms
ðv2j3=vT2Þref

IH
; ðv2j3=vI2

HÞ
ref
T ; ðvj4=vTÞref

IH
; ðv2j4=vT2Þref

IH
are

related to the temperature dependence of the glassy physical pa-
rameters. Nevertheless, their values are adjusted in this paper to
represent optimally the measured temperature dependence of
glassy ap(T ) and cp(T ) below Tref. This adjustment is similar
to the modification of various parameters listed in Table 6 in
Ref. [4]. Finally, there are only the relaxation function parame-
ters 3k and lk in Table 2, which are not related to the physical

Table 2

The values of expansion terms and relaxation function parameters

Constant Units All PMM

samples

Sample aging time, h

0 192 1204

jII J kg�1 1.82� 106

jIT J kg�1 K�1 �1.12� 103

jTT J kg�1 K�2 5.6 5.3 5.3

jIIT J kg�1 �5.05� 103

jITT J kg�1 K�2 12.6

jTTT J kg�1 K�3 10�2 1.5� 10�2 1.5� 10�2

jTTTT J kg�1 K�4 �5� 10�4 0 0

jref
1 J kg�1 3.55� 105

jref
3 J kg�1 K�1 40.8 214 366

jref
4 J kg�1 K�2 0.37 0.3 0.19

ðvj3=vTÞref
IH

J kg�1 K�2 �19.1 �7.87 �3.82

ðvj3=vIHÞref
T J kg�1 K�2 �5.6� 103

ðv2j3=vT2Þref
IH

J kg�1 K�3 54 52 50

ðv2j3=vI2
HÞ

ref
T J kg�1 K�3 2.04� 105

ðvj4=vTÞref
IH

J kg�1 K�3 2.2� 10�2

ðv2j4=vT2Þref
IH

J kg�1 K�4 1.77� 10�5

31 Unitless 10�3 10�3 10�3

l1 s�1 10�3 10�5 10�5

33 Unitless 10�3 10�3 10�3

l3 s�1 10�2 10�4 10�4

34 Unitless 10�3 10�3 10�3

l4 s�1 10�3 10�5 10�5
parameters listed in Table 1. The values of these parameters
are determined by optimization of the correspondence between
the experimental plots and predictions in Figs. 1e4. Although
the number of the parameters and expansion terms in Tables 1
and 2 may seem high, their determination from the separately
measured material properties is straightforward. The specific
step that contributes to a proper description of the experimental
data in Figs. 1e4 is the choice of the reference temperature,
which is taken equal to the temperature of the peaks in thermal
expansion and specific heat.

The predictions in Figs. 1e4 were computed by an iterative
procedure using Mathematica Version 4. The iteration of the
system of Eqs. (1) and (3) follows the same procedure as
used in Ref. [4] with the exception that the relaxation func-
tions are not represented by the stretched exponential func-
tions as in Ref. [4] but by the expression (8), that is, the
functions emerging from the cooperative model discussed in
Section 3.

The double integral terms associated with the Helmholtz
free energy j contribution to the potential (configurational)
energy, Uc ¼ UNpot

þ ðj� jNÞ þ Tðh� hNÞ, are negligible
for isobaric tests [3]. Thus in our case the potential energy
Uc that governs the shift factor, log a ¼ C1ððUref

c =UcÞ � 1Þ;
and consequently, the material time,

t� � s� ¼
Z t

s

dx

aðxÞ; ð11Þ

is considered to equal Uc ¼ UNpot
þ Tðh� hNÞ. For evaluating

UNpot
the ‘‘glassy’’ limit assigning the glassy values to the cross-

term prefactors, Eq. (66) in [3], is used in the computation.
As mentioned above, the parameters 3k and lk in the nor-

malized relaxation function fk (k¼ 1, 3, 4) have to be found
by optimization in order to provide best representation of
experimental data in Figs. 1e4. As explained in Section 3
describing the cooperative model, the quantities 31, 33 and 34

represent an inverse measure of the extension of the underly-
ing process along the log t axis. As evident from Table 2, the
experimental results were properly described when using
3k¼ 10�3 for all the three relaxation functions. The calculation
did not reveal any significant change in these 3k values with
aging time, implying a constant width of about three decades
of the corresponding tk spectrum.

The second parameter of the relaxation model, lk, is the in-
verse of the relaxation time tk. In our case this is the tk-value
relating to simple elementary events, thus limiting the tk spec-
trum at its higher end, and fixing its position along the time
axis. In contrast to 3k, a distinct dependence of lk on aging
is noted. As shown in Table 2, the rates l1, l3 and l4 relating
to the bulk modulus, thermal expansion and heat capacity
relaxation functions, respectively, are lowered by the aging
process by a factor 10�2.

On a qualitative level we thus arrive at the expected result
that without the consolidation of the sample at the aging tem-
perature, and thus no entropy relaxation and no decrease in the
potential energy Uc ¼ UNpot

þ Tðh� hNÞ, the transition to the
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equilibrium state is facilitated. The role of the entropic relax-
ation is reflected by the relaxation function f3 which governs
the isothermal relaxation as follows from Eq. (3) when the
temperature-dependent term is eliminated. The rate entering
this function is an order of magnitude larger than the rates
l1 and l4.

From the 3k and lk values in Table 2 one may conclude that
the relaxation time spectrum underlying the measured data
retains its width while shifting to longer times as the aging
period is extended. This is, in essence, what is normally found
when determining the effect of aging on viscoelastic phenom-
ena, such as creep, stress relaxation or dynamic mechanical
properties [26,27].

6. Conclusions

The application of the rational mechanics scheme presented
by Caruthers et al. [3] and Adolf et al. [4] to the volumetric
and enthalpic behaviors of a-PMMA during temperature up-
scans following different periods of aging (0, 192, and
1204 h) produced good agreement between experimental re-
sults and theoretical predictions. This applies both to the dila-
tometric (mercury-in-glass) and DSC data presented as v(T )
and h(T ) graphs and their differential counterparts, that is,
a(T ) and cp(T ). The intensity and position of the peaks ap-
pearing in the latter graphs was properly emulated by the
theory.

The original theoretical framework [3,4] was slightly mod-
ified by replacing the stretched exponential representation of
the time dependence of the thermodynamic quantities by a sim-
ple cooperative model based on a model reminiscent of BeE
statistics. The effect of aging was reflected in a shift of the cor-
responding distribution of relaxation times, t, towards longer
t values, while the width of the t distribution remained con-
stant. The relaxation parameters appear to assume reasonable
values, considering the fact that they were obtained by
evaluation of volumetric and enthalpic data recorded during
a temperature up-scan.
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